Виды аудита и сопутствующих аудиту услуг

Заказать уникальную курсовую работу
Тип работы: Курсовая работа
Предмет: Бухгалтерский учет, анализ и аудит
  • 27 27 страниц
  • 30 + 30 источников
  • Добавлена 23.11.2012
1 000 руб.
  • Содержание
  • Часть работы
  • Список литературы
  • Вопросы/Ответы

Введение
1. Понятие аудита и аудиторской деятельности
1.1 Сущность и правовая природа аудиторской деятельности
1.2 Виды аудита
2. Характеристика услуг, сопутствующих аудиту
2.1 Виды услуг, сопутствующих аудиту
2.2 Организация и проведение сопутствующих аудиту услуг
Заключение
Список использованной литературы






Фрагмент для ознакомления

), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.) Когнитивные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
Прогресс в охране здоровья населения основан, прежде всего, на внедрении в практику здравоохранения России современных научных разработок, обеспечивающих снижение заболеваемости, инвалидности и смертности. Существенное место в решении этих вопросов занимают когнитивные технологии, ориентированные на мониторинг социально значимых хронических заболеваний и консультативную поддержку лечебно-диагностического процесса. Современная медицина – это комплексный динамический подход к оценке индивидуального и общественного здоровья, это мониторинг, учитывающий разнообразные влияния окружающей среды (природные и техногенные) на организм плода, ребенка, взрослого человека. Появился даже термин «технология здоровья», хотя и не совсем точно отражающий существо вопроса, но характеризующий новый этап в организации системы охраны здоровья населения.
Формальное представление системы знаний о функционировании медицинского учреждения может служить основой для оптимизации принятия оперативных и долговременных решений. Оптимальным решением оперативного обеспечения информацией лиц, принимающих решения, может быть построение хранилища данных, интегрирующего необходимые сведения из существующих учрежденческих автоматизированных систем. В этом случае обеспечивается полноценная поддержка принятия управленческих решений. На государственном уровне США поставили целью формирование единой национальной базы данных (Uniform National Data Set), в которую должны войти данные о заболеваемости и смертности, факторах риска (профессиональных, окружающей среды, поведенческих) и статистика, характеризующая местные службы здоровья [14].
Сегодняшнее состояние когнитивных технологий здравоохранения России позволяет перейти от автоматизации отдельных процессов учета медицинских услуг к созданию интегрированных систем, обеспечивающих возможность непрерывной автоматизированной обработки информации. Информационные ресурсы системы здравоохранения и ОМС включают в себя базы данных по различным направлениям деятельности. В качестве примеров можно назвать республику Удмуртию, в которой достигнут 100-процентный охват медицинских учреждений автоматизацией по направлениям «Стационар», «Поликлиника», «Стоматология», «Кадры» и г. Новокузнецк, где разработана и эксплуатируется интегрированная автоматизированная система управления охраной здоровья населения «Здоровье». Такие системы позволяют переходить от анализа данных к анализу ситуации и к прогнозированию состояния здоровья населения.
В области охраны здоровья детей и состояния здравоохранения в стране младенческая смертность представляет собой интегральный критерий для оценки общего положения. Приказ Минздрава России № 241 от 07.08.2000 г., которым была утверждена медицинская документация, удостоверяющая случаи рождения и смерти, заложил основу для сочетанного многофакторного анализа младенческой и перинатальной смертности с данными, наблюдаемыми при рождении детей, что обеспечивает разработанная МНИИПДХ (при поддержке фонда Сороса), автоматизированная система информационной поддержки сбора и анализа данных. Комплексный анализ данных является предпосылкой для оценки эффективности работы медицинских учреждений и факторов, определяющих уровень и перспективы дальнейшего снижения детской смертности, и основой для принятия обоснованных управленческих решений по широкому кругу вопросов детского здравоохранения, в том числе для определения приоритетов и объемов необходимого финансирования [14].
Автоматизированный регистр детей-инвалидов «ДИСАРЕГ», разработка которого осуществлена в МНИИПДХ, обеспечивает ведение базы данных детей-инвалидов и получение однотипной учетно-отчетной документации в декретируемые сроки и по запросам, что соответствует Указу Президента РФ от 27.07.92г. №802 «О научном и информационном обеспечении проблем инвалидности и инвалидов». Медицинская карта соответствует требованиям учета характера нарушений и их динамики при различных причинах инвалидности, а также социальной адаптированности детей и их потребности в медико-психолого-педагогической коррекции и вспомогательных средствах. Этот регистр, включающий уровни учреждения, городской, региональный и федеральный, может послужить основой для системы государственной статистики детской инвалидности в России.
В настоящее время в структуре детской заболеваемости и смертности в большинстве развитых стран на первое место выходят врожденные пороки развития. Последние встречаются примерно у 5% новорожденных, а их вклад в структуру причин младенческой смертности достигает 20%. В то же время, по данным ВОЗ может быть предупреждено не менее 10% случаев ВПР. С 1999г. в Российской Федерации проводится мониторинг врожденных пороков. В нем участвуют более 40 субъектов Федерации, использующих разработанное в МНИИПДХ программное обеспечение, что способствует более полному и раннему выявления ВПР, позволяет получить объективную оценку эффективности проводимых профилактических мероприятий и поддерживать территориальные и федеральную базы данных. В результате мониторинга, только за первые три года, уровень выявления ВПР у новорожденных повысился в 2 и более раз в Архангельской, Новгородской и Московской областях [14].
С первых лет применения информационных технологий в здравоохранении одним из ведущих направлений являлись системы поддержки процесса принятия клинических решений. За несколько десятилетий они прошли путь от использования статистических и детерминистских методов до технологии интеллектуальных систем. Применение этих разработок в практике способствует оптимизации дифференциально-диагностического процесса, позволяет повысить качество диагностики и эффективность лечения. Можно привести ряд примеров из различных областей медицины. Так, около 50 ЛПУ России и СНГ используют созданную в МНИИПДХ автоматизированную систему ранней диагностики наследственных болезней «ДИАГЕН», позволяющей идентифицировать свыше 1200 форм (эффективность составляет 90% в сравнении с 60% у врачей медико-генетических консультаций). Там же создана система «КЛИНЭКО», ориентированная на раннее выявление у детей заболеваний, связанных с длительным воздействием экотоксических факторов (первоначально широкий перечень потенциально возможных экотоксикантов уменьшается после рассмотрения системой «признаков-маркеров», характерных для определенных веществ).
Система «ЭСБАД», разработанная МНИИПДХ совместно с Институтом системного анализа РАН, предназначена в помощь врачу при дифференциальной диагностике бронхиальной астмы, определяет степень тяжести заболевания и дает рекомендации по лечению (эффективность – 87,2%).
Программа «Неонатальные судороги» позволяет успешно диагностировать судороги периода новорожденности, встречающиеся при 78 заболеваниях и синдромах, и обеспечивает повышение эффективности диагностики на 30 % по сравнению с традиционными методами и снижение инвалидизации детей вследствие своевременного установления правильного диагноза и назначения адекватной терапии.
Компьютерная технология «Айболит» (НЦ ССХ им. А.Н. Бакулева, Бураковский В.И. и др.), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.)

Когнитивные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
Прогресс в охране здоровья населения основан, прежде всего, на внедрении в практику здравоохранения России современных научных разработок, обеспечивающих снижение заболеваемости, инвалидности и смертности. Существенное место в решении этих вопросов занимают когнитивные технологии, ориентированные на мониторинг социально значимых хронических заболеваний и консультативную поддержку лечебно-диагностического процесса. Современная медицина – это комплексный динамический подход к оценке индивидуального и общественного здоровья, это мониторинг, учитывающий разнообразные влияния окружающей среды (природные и техногенные) на организм плода, ребенка, взрослого человека. Появился даже термин «технология здоровья», хотя и не совсем точно отражающий существо вопроса, но характеризующий новый этап в организации системы охраны здоровья населения.
Формальное представление системы знаний о функционировании медицинского учреждения может служить основой для оптимизации принятия оперативных и долговременных решений. Оптимальным решением оперативного обеспечения информацией лиц, принимающих решения, может быть построение хранилища данных, интегрирующего необходимые сведения из существующих учрежденческих автоматизированных систем. В этом случае обеспечивается полноценная поддержка принятия управленческих решений. На государственном уровне США поставили целью формирование единой национальной базы данных (Uniform National Data Set), в которую должны войти данные о заболеваемости и смертности, факторах риска (профессиональных, окружающей среды, поведенческих) и статистика, характеризующая местные службы здоровья [14].
Сегодняшнее состояние когнитивных технологий здравоохранения России позволяет перейти от автоматизации отдельных процессов учета медицинских услуг к созданию интегрированных систем, обеспечивающих возможность непрерывной автоматизированной обработки информации. Информационные ресурсы системы здравоохранения и ОМС включают в себя базы данных по различным направлениям деятельности. В качестве примеров можно назвать республику Удмуртию, в которой достигнут 100-процентный охват медицинских учреждений автоматизацией по направлениям «Стационар», «Поликлиника», «Стоматология», «Кадры» и г. Новокузнецк, где разработана и эксплуатируется интегрированная автоматизированная система управления охраной здоровья населения «Здоровье». Такие системы позволяют переходить от анализа данных к анализу ситуации и к прогнозированию состояния здоровья населения.
В области охраны здоровья детей и состояния здравоохранения в стране младенческая смертность представляет собой интегральный критерий для оценки общего положения. Приказ Минздрава России № 241 от 07.08.2000 г., которым была утверждена медицинская документация, удостоверяющая случаи рождения и смерти, заложил основу для сочетанного многофакторного анализа младенческой и перинатальной смертности с данными, наблюдаемыми при рождении детей, что обеспечивает разработанная МНИИПДХ (при поддержке фонда Сороса), автоматизированная система информационной поддержки сбора и анализа данных. Комплексный анализ данных является предпосылкой для оценки эффективности работы медицинских учреждений и факторов, определяющих уровень и перспективы дальнейшего снижения детской смертности, и основой для принятия обоснованных управленческих решений по широкому кругу вопросов детского здравоохранения, в том числе для определения приоритетов и объемов необходимого финансирования [14].
Автоматизированный регистр детей-инвалидов «ДИСАРЕГ», разработка которого осуществлена в МНИИПДХ, обеспечивает ведение базы данных детей-инвалидов и получение однотипной учетно-отчетной документации в декретируемые сроки и по запросам, что соответствует Указу Президента РФ от 27.07.92г. №802 «О научном и информационном обеспечении проблем инвалидности и инвалидов». Медицинская карта соответствует требованиям учета характера нарушений и их динамики при различных причинах инвалидности, а также социальной адаптированности детей и их потребности в медико-психолого-педагогической коррекции и вспомогательных средствах. Этот регистр, включающий уровни учреждения, городской, региональный и федеральный, может послужить основой для системы государственной статистики детской инвалидности в России.
В настоящее время в структуре детской заболеваемости и смертности в большинстве развитых стран на первое место выходят врожденные пороки развития. Последние встречаются примерно у 5% новорожденных, а их вклад в структуру причин младенческой смертности достигает 20%. В то же время, по данным ВОЗ может быть предупреждено не менее 10% случаев ВПР. С 1999г. в Российской Федерации проводится мониторинг врожденных пороков. В нем участвуют более 40 субъектов Федерации, использующих разработанное в МНИИПДХ программное обеспечение, что способствует более полному и раннему выявления ВПР, позволяет получить объективную оценку эффективности проводимых профилактических мероприятий и поддерживать территориальные и федеральную базы данных. В результате мониторинга, только за первые три года, уровень выявления ВПР у новорожденных повысился в 2 и более раз в Архангельской, Новгородской и Московской областях [14].
С первых лет применения информационных технологий в здравоохранении одним из ведущих направлений являлись системы поддержки процесса принятия клинических решений. За несколько десятилетий они прошли путь от использования статистических и детерминистских методов до технологии интеллектуальных систем. Применение этих разработок в практике способствует оптимизации дифференциально-диагностического процесса, позволяет повысить качество диагностики и эффективность лечения. Можно привести ряд примеров из различных областей медицины. Так, около 50 ЛПУ России и СНГ используют созданную в МНИИПДХ автоматизированную систему ранней диагностики наследственных болезней «ДИАГЕН», позволяющей идентифицировать свыше 1200 форм (эффективность составляет 90% в сравнении с 60% у врачей медико-генетических консультаций). Там же создана система «КЛИНЭКО», ориентированная на раннее выявление у детей заболеваний, связанных с длительным воздействием экотоксических факторов (первоначально широкий перечень потенциально возможных экотоксикантов уменьшается после рассмотрения системой «признаков-маркеров», характерных для определенных веществ).
Система «ЭСБАД», разработанная МНИИПДХ совместно с Институтом системного анализа РАН, предназначена в помощь врачу при дифференциальной диагностике бронхиальной астмы, определяет степень тяжести заболевания и дает рекомендации по лечению (эффективность – 87,2%).
Программа «Неонатальные судороги» позволяет успешно диагностировать судороги периода новорожденности, встречающиеся при 78 заболеваниях и синдромах, и обеспечивает повышение эффективности диагностики на 30 % по сравнению с традиционными методами и снижение инвалидизации детей вследствие своевременного установления правильного диагноза и назначения адекватной терапии.
Компьютерная технология «Айболит» (НЦ ССХ им. А.Н. Бакулева, Бураковский В.И. и др.), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.) Когнитивные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
Прогресс в охране здоровья населения основан, прежде всего, на внедрении в практику здравоохранения России современных научных разработок, обеспечивающих снижение заболеваемости, инвалидности и смертности. Существенное место в решении этих вопросов занимают когнитивные технологии, ориентированные на мониторинг социально значимых хронических заболеваний и консультативную поддержку лечебно-диагностического процесса. Современная медицина – это комплексный динамический подход к оценке индивидуального и общественного здоровья, это мониторинг, учитывающий разнообразные влияния окружающей среды (природные и техногенные) на организм плода, ребенка, взрослого человека. Появился даже термин «технология здоровья», хотя и не совсем точно отражающий существо вопроса, но характеризующий новый этап в организации системы охраны здоровья населения.
Формальное представление системы знаний о функционировании медицинского учреждения может служить основой для оптимизации принятия оперативных и долговременных решений. Оптимальным решением оперативного обеспечения информацией лиц, принимающих решения, может быть построение хранилища данных, интегрирующего необходимые сведения из существующих учрежденческих автоматизированных систем. В этом случае обеспечивается полноценная поддержка принятия управленческих решений. На государственном уровне США поставили целью формирование единой национальной базы данных (Uniform National Data Set), в которую должны войти данные о заболеваемости и смертности, факторах риска (профессиональных, окружающей среды, поведенческих) и статистика, характеризующая местные службы здоровья [14].
Сегодняшнее состояние когнитивных технологий здравоохранения России позволяет перейти от автоматизации отдельных процессов учета медицинских услуг к созданию интегрированных систем, обеспечивающих возможность непрерывной автоматизированной обработки информации. Информационные ресурсы системы здравоохранения и ОМС включают в себя базы данных по различным направлениям деятельности. В качестве примеров можно назвать республику Удмуртию, в которой достигнут 100-процентный охват медицинских учреждений автоматизацией по направлениям «Стационар», «Поликлиника», «Стоматология», «Кадры» и г. Новокузнецк, где разработана и эксплуатируется интегрированная автоматизированная система управления охраной здоровья населения «Здоровье». Такие системы позволяют переходить от анализа данных к анализу ситуации и к прогнозированию состояния здоровья населения.
В области охраны здоровья детей и состояния здравоохранения в стране младенческая смертность представляет собой интегральный критерий для оценки общего положения. Приказ Минздрава России № 241 от 07.08.2000 г., которым была утверждена медицинская документация, удостоверяющая случаи рождения и смерти, заложил основу для сочетанного многофакторного анализа младенческой и перинатальной смертности с данными, наблюдаемыми при рождении детей, что обеспечивает разработанная МНИИПДХ (при поддержке фонда Сороса), автоматизированная система информационной поддержки сбора и анализа данных. Комплексный анализ данных является предпосылкой для оценки эффективности работы медицинских учреждений и факторов, определяющих уровень и перспективы дальнейшего снижения детской смертности, и основой для принятия обоснованных управленческих решений по широкому кругу вопросов детского здравоохранения, в том числе для определения приоритетов и объемов необходимого финансирования [14].
Автоматизированный регистр детей-инвалидов «ДИСАРЕГ», разработка которого осуществлена в МНИИПДХ, обеспечивает ведение базы данных детей-инвалидов и получение однотипной учетно-отчетной документации в декретируемые сроки и по запросам, что соответствует Указу Президента РФ от 27.07.92г. №802 «О научном и информационном обеспечении проблем инвалидности и инвалидов». Медицинская карта соответствует требованиям учета характера нарушений и их динамики при различных причинах инвалидности, а также социальной адаптированности детей и их потребности в медико-психолого-педагогической коррекции и вспомогательных средствах. Этот регистр, включающий уровни учреждения, городской, региональный и федеральный, может послужить основой для системы государственной статистики детской инвалидности в России.
В настоящее время в структуре детской заболеваемости и смертности в большинстве развитых стран на первое место выходят врожденные пороки развития. Последние встречаются примерно у 5% новорожденных, а их вклад в структуру причин младенческой смертности достигает 20%. В то же время, по данным ВОЗ может быть предупреждено не менее 10% случаев ВПР. С 1999г. в Российской Федерации проводится мониторинг врожденных пороков. В нем участвуют более 40 субъектов Федерации, использующих разработанное в МНИИПДХ программное обеспечение, что способствует более полному и раннему выявления ВПР, позволяет получить объективную оценку эффективности проводимых профилактических мероприятий и поддерживать территориальные и федеральную базы данных. В результате мониторинга, только за первые три года, уровень выявления ВПР у новорожденных повысился в 2 и более раз в Архангельской, Новгородской и Московской областях [14].
С первых лет применения информационных технологий в здравоохранении одним из ведущих направлений являлись системы поддержки процесса принятия клинических решений. За несколько десятилетий они прошли путь от использования статистических и детерминистских методов до технологии интеллектуальных систем. Применение этих разработок в практике способствует оптимизации дифференциально-диагностического процесса, позволяет повысить качество диагностики и эффективность лечения. Можно привести ряд примеров из различных областей медицины. Так, около 50 ЛПУ России и СНГ используют созданную в МНИИПДХ автоматизированную систему ранней диагностики наследственных болезней «ДИАГЕН», позволяющей идентифицировать свыше 1200 форм (эффективность составляет 90% в сравнении с 60% у врачей медико-генетических консультаций). Там же создана система «КЛИНЭКО», ориентированная на раннее выявление у детей заболеваний, связанных с длительным воздействием экотоксических факторов (первоначально широкий перечень потенциально возможных экотоксикантов уменьшается после рассмотрения системой «признаков-маркеров», характерных для определенных веществ).
Система «ЭСБАД», разработанная МНИИПДХ совместно с Институтом системного анализа РАН, предназначена в помощь врачу при дифференциальной диагностике бронхиальной астмы, определяет степень тяжести заболевания и дает рекомендации по лечению (эффективность – 87,2%).
Программа «Неонатальные судороги» позволяет успешно диагностировать судороги периода новорожденности, встречающиеся при 78 заболеваниях и синдромах, и обеспечивает повышение эффективности диагностики на 30 % по сравнению с традиционными методами и снижение инвалидизации детей вследствие своевременного установления правильного диагноза и назначения адекватной терапии.
Компьютерная технология «Айболит» (НЦ ССХ им. А.Н. Бакулева, Бураковский В.И. и др.), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.) Когнитивные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
Прогресс в охране здоровья населения основан, прежде всего, на внедрении в практику здравоохранения России современных научных разработок, обеспечивающих снижение заболеваемости, инвалидности и смертности. Существенное место в решении этих вопросов занимают когнитивные технологии, ориентированные на мониторинг социально значимых хронических заболеваний и консультативную поддержку лечебно-диагностического процесса. Современная медицина – это комплексный динамический подход к оценке индивидуального и общественного здоровья, это мониторинг, учитывающий разнообразные влияния окружающей среды (природные и техногенные) на организм плода, ребенка, взрослого человека. Появился даже термин «технология здоровья», хотя и не совсем точно отражающий существо вопроса, но характеризующий новый этап в организации системы охраны здоровья населения.
Формальное представление системы знаний о функционировании медицинского учреждения может служить основой для оптимизации принятия оперативных и долговременных решений. Оптимальным решением оперативного обеспечения информацией лиц, принимающих решения, может быть построение хранилища данных, интегрирующего необходимые сведения из существующих учрежденческих автоматизированных систем. В этом случае обеспечивается полноценная поддержка принятия управленческих решений. На государственном уровне США поставили целью формирование единой национальной базы данных (Uniform National Data Set), в которую должны войти данные о заболеваемости и смертности, факторах риска (профессиональных, окружающей среды, поведенческих) и статистика, характеризующая местные службы здоровья [14].
Сегодняшнее состояние когнитивных технологий здравоохранения России позволяет перейти от автоматизации отдельных процессов учета медицинских услуг к созданию интегрированных систем, обеспечивающих возможность непрерывной автоматизированной обработки информации. Информационные ресурсы системы здравоохранения и ОМС включают в себя базы данных по различным направлениям деятельности. В качестве примеров можно назвать республику Удмуртию, в которой достигнут 100-процентный охват медицинских учреждений автоматизацией по направлениям «Стационар», «Поликлиника», «Стоматология», «Кадры» и г. Новокузнецк, где разработана и эксплуатируется интегрированная автоматизированная система управления охраной здоровья населения «Здоровье». Такие системы позволяют переходить от анализа данных к анализу ситуации и к прогнозированию состояния здоровья населения.
В области охраны здоровья детей и состояния здравоохранения в стране младенческая смертность представляет собой интегральный критерий для оценки общего положения. Приказ Минздрава России № 241 от 07.08.2000 г., которым была утверждена медицинская документация, удостоверяющая случаи рождения и смерти, заложил основу для сочетанного многофакторного анализа младенческой и перинатальной смертности с данными, наблюдаемыми при рождении детей, что обеспечивает разработанная МНИИПДХ (при поддержке фонда Сороса), автоматизированная система информационной поддержки сбора и анализа данных. Комплексный анализ данных является предпосылкой для оценки эффективности работы медицинских учреждений и факторов, определяющих уровень и перспективы дальнейшего снижения детской смертности, и основой для принятия обоснованных управленческих решений по широкому кругу вопросов детского здравоохранения, в том числе для определения приоритетов и объемов необходимого финансирования [14].
Автоматизированный регистр детей-инвалидов «ДИСАРЕГ», разработка которого осуществлена в МНИИПДХ, обеспечивает ведение базы данных детей-инвалидов и получение однотипной учетно-отчетной документации в декретируемые сроки и по запросам, что соответствует Указу Президента РФ от 27.07.92г. №802 «О научном и информационном обеспечении проблем инвалидности и инвалидов». Медицинская карта соответствует требованиям учета характера нарушений и их динамики при различных причинах инвалидности, а также социальной адаптированности детей и их потребности в медико-психолого-педагогической коррекции и вспомогательных средствах. Этот регистр, включающий уровни учреждения, городской, региональный и федеральный, может послужить основой для системы государственной статистики детской инвалидности в России.
В настоящее время в структуре детской заболеваемости и смертности в большинстве развитых стран на первое место выходят врожденные пороки развития. Последние встречаются примерно у 5% новорожденных, а их вклад в структуру причин младенческой смертности достигает 20%. В то же время, по данным ВОЗ может быть предупреждено не менее 10% случаев ВПР. С 1999г. в Российской Федерации проводится мониторинг врожденных пороков. В нем участвуют более 40 субъектов Федерации, использующих разработанное в МНИИПДХ программное обеспечение, что способствует более полному и раннему выявления ВПР, позволяет получить объективную оценку эффективности проводимых профилактических мероприятий и поддерживать территориальные и федеральную базы данных. В результате мониторинга, только за первые три года, уровень выявления ВПР у новорожденных повысился в 2 и более раз в Архангельской, Новгородской и Московской областях [14].
С первых лет применения информационных технологий в здравоохранении одним из ведущих направлений являлись системы поддержки процесса принятия клинических решений. За несколько десятилетий они прошли путь от использования статистических и детерминистских методов до технологии интеллектуальных систем. Применение этих разработок в практике способствует оптимизации дифференциально-диагностического процесса, позволяет повысить качество диагностики и эффективность лечения. Можно привести ряд примеров из различных областей медицины. Так, около 50 ЛПУ России и СНГ используют созданную в МНИИПДХ автоматизированную систему ранней диагностики наследственных болезней «ДИАГЕН», позволяющей идентифицировать свыше 1200 форм (эффективность составляет 90% в сравнении с 60% у врачей медико-генетических консультаций). Там же создана система «КЛИНЭКО», ориентированная на раннее выявление у детей заболеваний, связанных с длительным воздействием экотоксических факторов (первоначально широкий перечень потенциально возможных экотоксикантов уменьшается после рассмотрения системой «признаков-маркеров», характерных для определенных веществ).
Система «ЭСБАД», разработанная МНИИПДХ совместно с Институтом системного анализа РАН, предназначена в помощь врачу при дифференциальной диагностике бронхиальной астмы, определяет степень тяжести заболевания и дает рекомендации по лечению (эффективность – 87,2%).
Программа «Неонатальные судороги» позволяет успешно диагностировать судороги периода новорожденности, встречающиеся при 78 заболеваниях и синдромах, и обеспечивает повышение эффективности диагностики на 30 % по сравнению с традиционными методами и снижение инвалидизации детей вследствие своевременного установления правильного диагноза и назначения адекватной терапии.
Компьютерная технология «Айболит» (НЦ ССХ им. А.Н. Бакулева, Бураковский В.И. и др.), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.) Когнитивные технологии сделались неотъемлемой составляющей здравоохранения. Они применяются на всех уровнях управления и оказания медицинской помощи. В настоящее время осуществляется переход к комплексной автоматизации отдельных направлений медицины, лечебно-профилактических учреждений и территориального здравоохранения.
Прогресс в охране здоровья населения основан, прежде всего, на внедрении в практику здравоохранения России современных научных разработок, обеспечивающих снижение заболеваемости, инвалидности и смертности. Существенное место в решении этих вопросов занимают когнитивные технологии, ориентированные на мониторинг социально значимых хронических заболеваний и консультативную поддержку лечебно-диагностического процесса. Современная медицина – это комплексный динамический подход к оценке индивидуального и общественного здоровья, это мониторинг, учитывающий разнообразные влияния окружающей среды (природные и техногенные) на организм плода, ребенка, взрослого человека. Появился даже термин «технология здоровья», хотя и не совсем точно отражающий существо вопроса, но характеризующий новый этап в организации системы охраны здоровья населения.
Формальное представление системы знаний о функционировании медицинского учреждения может служить основой для оптимизации принятия оперативных и долговременных решений. Оптимальным решением оперативного обеспечения информацией лиц, принимающих решения, может быть построение хранилища данных, интегрирующего необходимые сведения из существующих учрежденческих автоматизированных систем. В этом случае обеспечивается полноценная поддержка принятия управленческих решений. На государственном уровне США поставили целью формирование единой национальной базы данных (Uniform National Data Set), в которую должны войти данные о заболеваемости и смертности, факторах риска (профессиональных, окружающей среды, поведенческих) и статистика, характеризующая местные службы здоровья [14].
Сегодняшнее состояние когнитивных технологий здравоохранения России позволяет перейти от автоматизации отдельных процессов учета медицинских услуг к созданию интегрированных систем, обеспечивающих возможность непрерывной автоматизированной обработки информации. Информационные ресурсы системы здравоохранения и ОМС включают в себя базы данных по различным направлениям деятельности. В качестве примеров можно назвать республику Удмуртию, в которой достигнут 100-процентный охват медицинских учреждений автоматизацией по направлениям «Стационар», «Поликлиника», «Стоматология», «Кадры» и г. Новокузнецк, где разработана и эксплуатируется интегрированная автоматизированная система управления охраной здоровья населения «Здоровье». Такие системы позволяют переходить от анализа данных к анализу ситуации и к прогнозированию состояния здоровья населения.
В области охраны здоровья детей и состояния здравоохранения в стране младенческая смертность представляет собой интегральный критерий для оценки общего положения. Приказ Минздрава России № 241 от 07.08.2000 г., которым была утверждена медицинская документация, удостоверяющая случаи рождения и смерти, заложил основу для сочетанного многофакторного анализа младенческой и перинатальной смертности с данными, наблюдаемыми при рождении детей, что обеспечивает разработанная МНИИПДХ (при поддержке фонда Сороса), автоматизированная система информационной поддержки сбора и анализа данных. Комплексный анализ данных является предпосылкой для оценки эффективности работы медицинских учреждений и факторов, определяющих уровень и перспективы дальнейшего снижения детской смертности, и основой для принятия обоснованных управленческих решений по широкому кругу вопросов детского здравоохранения, в том числе для определения приоритетов и объемов необходимого финансирования [14].
Автоматизированный регистр детей-инвалидов «ДИСАРЕГ», разработка которого осуществлена в МНИИПДХ, обеспечивает ведение базы данных детей-инвалидов и получение однотипной учетно-отчетной документации в декретируемые сроки и по запросам, что соответствует Указу Президента РФ от 27.07.92г. №802 «О научном и информационном обеспечении проблем инвалидности и инвалидов». Медицинская карта соответствует требованиям учета характера нарушений и их динамики при различных причинах инвалидности, а также социальной адаптированности детей и их потребности в медико-психолого-педагогической коррекции и вспомогательных средствах. Этот регистр, включающий уровни учреждения, городской, региональный и федеральный, может послужить основой для системы государственной статистики детской инвалидности в России.
В настоящее время в структуре детской заболеваемости и смертности в большинстве развитых стран на первое место выходят врожденные пороки развития. Последние встречаются примерно у 5% новорожденных, а их вклад в структуру причин младенческой смертности достигает 20%. В то же время, по данным ВОЗ может быть предупреждено не менее 10% случаев ВПР. С 1999г. в Российской Федерации проводится мониторинг врожденных пороков. В нем участвуют более 40 субъектов Федерации, использующих разработанное в МНИИПДХ программное обеспечение, что способствует более полному и раннему выявления ВПР, позволяет получить объективную оценку эффективности проводимых профилактических мероприятий и поддерживать территориальные и федеральную базы данных. В результате мониторинга, только за первые три года, уровень выявления ВПР у новорожденных повысился в 2 и более раз в Архангельской, Новгородской и Московской областях [14].
С первых лет применения информационных технологий в здравоохранении одним из ведущих направлений являлись системы поддержки процесса принятия клинических решений. За несколько десятилетий они прошли путь от использования статистических и детерминистских методов до технологии интеллектуальных систем. Применение этих разработок в практике способствует оптимизации дифференциально-диагностического процесса, позволяет повысить качество диагностики и эффективность лечения. Можно привести ряд примеров из различных областей медицины. Так, около 50 ЛПУ России и СНГ используют созданную в МНИИПДХ автоматизированную систему ранней диагностики наследственных болезней «ДИАГЕН», позволяющей идентифицировать свыше 1200 форм (эффективность составляет 90% в сравнении с 60% у врачей медико-генетических консультаций). Там же создана система «КЛИНЭКО», ориентированная на раннее выявление у детей заболеваний, связанных с длительным воздействием экотоксических факторов (первоначально широкий перечень потенциально возможных экотоксикантов уменьшается после рассмотрения системой «признаков-маркеров», характерных для определенных веществ).
Система «ЭСБАД», разработанная МНИИПДХ совместно с Институтом системного анализа РАН, предназначена в помощь врачу при дифференциальной диагностике бронхиальной астмы, определяет степень тяжести заболевания и дает рекомендации по лечению (эффективность – 87,2%).
Программа «Неонатальные судороги» позволяет успешно диагностировать судороги периода новорожденности, встречающиеся при 78 заболеваниях и синдромах, и обеспечивает повышение эффективности диагностики на 30 % по сравнению с традиционными методами и снижение инвалидизации детей вследствие своевременного установления правильного диагноза и назначения адекватной терапии.
Компьютерная технология «Айболит» (НЦ ССХ им. А.Н. Бакулева, Бураковский В.И. и др.), включает математическую модель кровообращения, «реагирующую» на поступающую с датчиков текущую информацию. Она позволяет не только проводить диагностику и оценку состояния больного, но и помогать при выборе и последующей коррекции лечебных мероприятий. Мониторно-компьютерная технология с обратной связью позволяет реализовать индивидуальный подход к лечению больного (РГМУ, Гаспарян С.А., Зарубина Т.В.).
Методы обработки и сегментации 3D-изображений, реализованные в программной системе (МГУ, Гаврилов А.В. и др.), позволяют объективизировать радиологические исследования и обеспечивают реалистическую визуализацию внутренних структур и органов человека. Представляет интерес система ТАИС (Терапевтическая Автоматизированная Информационная Система), рассчитанная на полное компьютерное ведение пациента в стационаре при одновременной поддержке постановки развернутых клинических диагнозов, назначении исследований и лечения (РГМУ, Устинов А.Г., Ситарчук Е.А.)

Список использованной литературы

1. Гражданский кодекс Российской Федерации. Части первая, вторая, третья и четвертая: приняты Государственной Думой 21.10.1994 г., 22.12.1995 г., 01.11.2001 г. и 24.11.2006 г. (с учетом последующих изм. и доп.).
2. Налоговый кодекс Российской Федерации. Части первая и вторая: приняты Государственной Думой 16.07.1998 г. и 19.07.2000 г. (с учетом последующих изм. и доп.).
3. Кодекс Российской Федерации об административных правонару¬шениях: принят Государственной Думой 20.12.2001 г. (с учетом после¬дующих изм. и доп.).
4. Федеральный закон от 30.12.2008 г. № 307-ФЗ «Об аудиторской деятельности» (с учетом последующих изм. и доп.).
5. Федеральный закон Российской Федерации «О бухгалтерском учете» от 21.11.1996 г. № 129-ФЗ (с учетом последующих изм. и доп.).
6. Положение по бухгалтерскому учету «Информация об участии в совместной деятельности» (ПБУ 20/2003): утв. приказом Минфина РФ от 24.11.2003г. № 105н (в редакции приказа от 18.09.2006 г. № 116н).
7. Абакумова А. В. Основы аудита: Учебное пособие. - СПб.: СПбГУ ИТМО, 2009. - 56 с.
8. Арабян К. К. Организация и проведение аудиторской проверки: учебное пособие. – М.: ЮНИТИ-ДАНА, 2009. – 436 с.
9. Белуха Н. Т. Аудит: учебник. – М.: Знание, 2009. – 769 с.
10. Богданова Н. А., Рябова М. А. Аудит. Учебное пособие. – Ульяновск: УлГТУ, 2009. – 199 с.
11. Бородкин В. М., Панина И.В. Аудит (Основы аудита и аудиторской деятельности): Учебное пособие. - Воронеж: Изд-во ВГУ, 2009. - 36 с.
12. Булыга Р. П. Аудит: Учебник. – М.: ЮНИТИ-ДАНА, 2011. – 431 с.
13. Воронина Л. И. Аудит: теория и практика. – М.: Омега-Л, 2012. – 369 с.
14. Ендовицкий Д. А., Панина И. В. Международные стандарты аудиторской деятельности: учебное пособие. – М.: ЮНИТИ-ДАНА, 2010. – 272 с.
15. Касьянова С. А., Климова Н. В. Аудит. – М.: ИНФРА-М, 2012. – 175 с.
16. Коменденко С. Н., Моисеева И. В. Практические задания и тесты по аудиту: Учебное пособие. - Воронеж: Изд-во ВГУ, 2010. - 32 с.
17. Кочинев Ю. Ю. Аудит: теория и практика. - СПб.: Питер, 2010. – 378 с.
18. Мерзликина Е. М. Аудит: учебник для вузов. - М.: ИНФРА, 2009. – 396 с.
19. Миргородская Т. В. Аудит: учебное пособие для вузов. – М.: КНОРУС, 2008. – 408 с.
20. Подольский В.И. Аудит. Практикум: Учебное пособие для вузов / В.И. Подольский, А.А. Савин, Л.В. Сотникова; Под ред. В.И. Подольского. - М.: ЮНИТИ-ДАНА, 2008. - 606 с.
21. Пономарева С. В. Рогуленко Т. М. Основы аудита: учебник. – М.: Флинта, 2011. – 312 с.
22. Савин А. А., Савин И. А., Савин Д. А. Аудит для магистров: Практический аудит. – М.: ИНФРА-М, 2012. – 188 с.
23. Скоробар В. В. Аудит. Учебник для вузов. – М.: Просвещение, 2008. – 480 с.
24. Суглобов А.Е. Бухгалтерский учет и аудит: учебное пособие / А.Е. Суглобов, Б.Т. Жарылгасова. - М.: КНОРУС, 2009. - 496 с.
25. Суйц В. П., Шеремет А. Д. Аудит. Учебник. – М.: ИНФРА-М, 2011. – 267 с.
26. Федосеева Т. В. Бухгалтерский учет: Обязательный аудит. – Таганрог. – ТТИ ЮФУ, 2010. – 98 с.
27. Фролова Т. А. Сущность и принципы аудита. – Таганрог: ТТИ ЮФУ, 2009. – 123 с.
28. Фролова Т. А. Аудит: Подготовка аудиторской проверки. – Таганрог: ТТИ ЮФУ, 2009. – 198 с.
29. Черных М. Н., Юдина Г. А. Теоретические, организационно-правовые и методические основы аудита: Учебное пособие. - Красноярск: КрасГУ, 2009. - 112 с.
30. Юдина Г. А. Аудит: Учебно-методический комплекс. - Красноярск: КрасГУ, 2010. - 76 с.



Вопрос-ответ:

Какие виды аудита существуют?

Существуют различные виды аудита, такие как финансовый аудит, налоговый аудит, операционный аудит, информационный аудит и др.

Что такое аудиторская деятельность и какова ее правовая природа?

Аудиторская деятельность - это процесс независимой проверки и оценки финансовой отчетности организации. Правовая природа аудиторской деятельности заключается в соответствии с законодательством страны, где она осуществляется.

Какие виды услуг сопутствуют аудиту?

К аудиту могут сопутствовать такие услуги, как консультационные услуги по управлению, налоговые и правовые консультации, услуги по внутреннему контролю и ревизии, оценка бизнеса и др.

Как организуется и проводится сопутствующая аудиту услуга?

Организация и проведение сопутствующих аудиту услуг осуществляются на основе договоров между аудиторской фирмой и клиентом. Задачи и объем услуг определяются соглашением сторон и требованиями законодательства.

Какие виды аудита существуют и какова их сущность?

Существуют разные виды аудита, такие как финансовый аудит, операционный аудит, налоговый аудит и др. Их сущность заключается в проведении независимой проверки и оценке различных аспектов работы организации, в соответствии с требованиями законодательства и профессиональных стандартов.

Что такое аудиторская деятельность?

Аудиторская деятельность - это вид профессиональной деятельности, связанный с независимой проверкой и оценкой финансовой отчетности, финансовых операций и внутренних процессов организации.

Какова сущность и правовая природа аудиторской деятельности?

Сущность аудиторской деятельности состоит в проведении проверки деятельности организации с целью выявления ошибок, нарушений и рисков. Аудиторская деятельность имеет юридическую природу и регулируется специальными законами и нормативными актами.

Какие виды аудита существуют?

Существует несколько видов аудита, включая финансовый аудит, налоговый аудит, операционный аудит, информационный аудит и другие. Каждый вид аудита имеет свои особенности и направлен на определенные аспекты деятельности организации.