Английский язык Реферативный перевод

Заказать уникальный реферат
Тип работы: Реферат
Предмет: Английский продвинутый
  • 29 29 страниц
  • 0 + 0 источников
  • Добавлена 19.01.2017
299 руб.
  • Содержание
  • Часть работы
  • Список литературы
  • Вопросы/Ответы
1. Техносферная безопасности окружающей среды 2
2.Предвестники техногенных чрезвычайных ситуаций 5
3. Прогнозирование техногенных катастроф и роль космических систем в ее практической реализации 21
Выводы 29

Фрагмент для ознакомления

The search for evidence as well as necessary and sufficient conditions for natural and technogenic disasters and the optimal number of measureable factors is one of the vital aspects of further work.The current state and dynamics of space and geosphere, as has been repeatedly pointed out, is largely assessed as critical not only because of the natural processes inside the planet and in the surrounding physical space, but also because of the scale of human interference in the physical and ecological state of the earth. So not only do natural processes and their dynamics cause technogenic accidents and disasters, but technogenic processes themselves bring about such changes in the natural state of the planet that eventually produce catastrophic impact on industry and society.Dangerous exogenous and endogenous processes coupled with the lack or absence of protective measures or facilities, imperfect technologies and natural aging of infrastructure, incompetence or temporary inability of the servicing personnel can cause considerable financial losses and socio-economic damage. This warrants further efforts to explore ways for forecasting interaction between dynamically changing properties of infrastructure and continuously changing geo-logical environment, taking into account external factors. In so doing, it is necessary to use both contact-type and remote sensing methods. For example, one of the key current processes is the growing capacity of permanently operating units and facilities, as a result of which technogenic vibration and noise already exceed the planet’s maximum natural micro seismic background level by one order or two orders of magnitude, and change the engineering, geological, and seismic parameters of hitherto “quiet” places. Stresses exceeding the endurance strength of materials build up as a result of long-term operation of such facilities. Failures and breakdowns caused by wear and tear, and end of service life can be forecasted using statistical probability methods. Changes in the environment are studied using geophysical methods.Summing up the aforesaid, we should emphasize the diversity of factors that cause technogenic accidents which require unique analysis and forecasting methods, as well as contact-type and remote prevention techniques. Man-made emergencies caused by wear and tear, end of service life, technogenic effects on the geodynamic environment, increased concentrations of hazardous and explosive substances, gases and dust can be forecasted using physical and mathematical modeling. For example, continuous mathematical monitoring of potentially hazardous facilities using a dynamic model of safe operation has been proposed.Aerospace monitoring facilities have certain capabilities to detect, forecast, and prevent technogenic processes, even though the majority of them (see above) have no reliable harbingers that could be registered by aerospace systems, with the exception of anthropogenic disasters caused (provoked) by:• Geological and meteorological calamities;•Extreme resonance processes in mechanical systems caused by geodynamic vibrations in the earth’s crust;•Increased concentrations of potentially hazardous gases and/or dust;•Cascading failures of geotechnical systems (trunk pipelines, railroads, etc.) as a result of interaction with the environment;•Use of equipment for unusual purposes associated with gross violations of technical system operating rules.Aerospace monitoring provides a tool for early detection and prevention of destructive processes in geotechnical systems, oil spills and gas leaks, siphoning of petrol products, etc., for mapping areas intended for the construction of large technical facilities and monitoring their construction in order to detect erroneous or intentional deviations (in pipeline routes, in the construction of power transmission lines, railroads, etc.); for geodetic and environmental monitoring, and early warning of emergencies (fires, gas outbursts, hazardous spills, etc.).The Federal Agency for Mining and Industrial Supervision (ROSGORTECH NADZOR), the Russian Federal Inspectorate for Nuclear and Radiation Safety (ROSATOMNADZOR), and the relevant bodies within federal executive agencies monitor the state of industrial facilities and forecast possible accidents at them. Similar bodies exist at the regional level as well as within enterprises and organizations, and are known as industrial safety units. Monitoring is conducted using ground-based and aerospace systems of the relevant ministries, agencies, regional authorities, and organizations (enterprises) depending on their jurisdiction. The main element of the system is ground-based sensor monitoring networks and laboratory control capabilities of the federal civil defense organizations and its key elements subordinated to the Federal Agency for Hydrometeorology and Environment Monitoring, the Emergencies Ministry, the Agriculture Ministry, the Ministry of Health and Social Development, and the Ministry of Natural Resources.Russian space-based monitoring means are currently used mainly for detecting and specifying slowly evolving large-scale natural phenomena and processes. Aviation capabilities are used for the same purpose, as well as for monitoring the state of trunk pipelines, radiation, road, snow, and ice in areas of extensive destruction, etc. They have broad possibilities both in terms of coverage and promptness of information delivery, which makes them useful for a number of monitoring services that operate within their respective jurisdictions.General operational terms of Russia’s national forecasting and monitoring system are set forth in Regulation on the System of Monitoring, Laboratory Inspection and Forecasting of Natural and Technogenic Emergencies No. 483 of the Ministry for Emergency Situations of November 12, 2001, and in the regulations of its units and elements, in the regulatory documents of the relevant federal ministries and agencies, regional and territorial authorities. The results of emergency monitoring and forecasting serve as the starting point in developing long term, medium-term, and short-term target programs and plans, and in making relevant decisions to prevent and respond to disasters, including technogenic ones.The Russian Federal Space Program calls for developing national remote earth sensing system, including the creation and/or development of certain space assets that can jointly monitor natural calamities and technogenic disasters. These include remote sensing and monitoring, navigation and hydrometeorology, communications and relay systems. All of these space systems should, despite of their departmental disunity, constantly interact with each other through ground- based infrastructure designed for controlling space missions and for receiving, processing, and distributing space data. A combination of these space systems should be a multilevel hierarchic and constantly evolving intellectualized structure. Its ground-based elements should include centers for controlling space missions and for receiving, processing, and distributing space data, centers for thematic processing of monitoring data and developing methods of decoding and identifying observable processes and objects, an aviation surveillance system, test ranges for validating space data and grading onboard equipment used for monitoring natural and technogenic objects and processes, and situation centers for analyzing and gathering monitoring information as well as ground-based telemetric data necessary for making operational and strategic decisions.Many projects related to building of environment and/or hazardous facility monitoring space systems have been published in the world lately, but they have no clearly defined prognostication value. The analysis of such projects (see details in Chap. 3) showed that effective monitoring of technogenic facilities would require a space system incorporating a wide range of observation means, such as ultraviolet, visible, and infrared optical and electronic equipment (multispectral and hyperspectral), multichannel microwave equipment, multifrequency radar equipment (in the super-high and ultra-high frequency band), laser and lidarmultifrequency equipment, as well as powerful onboard information systems with a memory of hundreds of gigabytes. Given the current level of technology, its combined weight will be no less than two tons. A satellite furnished with such equipment could weigh about ten tons, and its power consumption would exceed 10 kV (the ENVISAT satellite weighing about eight tons and carrying only some of the above-mentioned equipment weighing 1,200 kg could serve as an example of such a solution). In order to ensure hourly information updating, it would be necessary to have six to twelve satellites in such an orbiting system, the cost of creating, testing, and deployment of which would amount to billions of U.S. dollars, let alone the creation of ground- based infrastructure, which would take at least 10-12 years. Such a program can hardly be implemented by any, even the most industrialized, nation alone.A different approach is used now: space systems are created for big groups of similar tasks facing different customers and information users. Therefore, technogenic disaster monitoring can also be conducted using various space systems. For example, there is a large remote earth sensing orbiting system consisting of dozens of optical and radio monitoring satellites, including military and dual-purpose ones. Most of them can perform not only civilian monitoring and mapping but also surveillance and target-marking functions during armed conflicts (the U.S. and NATO use both their own civilian high-resolution remote earth sensing satellites and similar systems owned by European countries, Israel, India, Japan, Canada, and others, thus conducting almost continuous monitoring of conflict zones, planning combat operations, and using high-precision weapons). It is possible that similar policy can be applied during periods of increased natural and/or techno risks, with the use of military (dual-purpose) space systems for monitoring of natural disasters and emergencies.Weather satellites which perform global climate and weather monitoring functions make it possible to forecast and warn of natural disasters caused by atmospheric disturbances: storms, floods, cyclones, torrential rains, droughts, etc., which often cause transport accidents on land and at sea. Weather satellite located in geostationary orbit and forms an integral part of the global monitoring system under the World Meteorological Organization. The number of satellites in geostationary orbit should be sufficient for conducting continuous Earth monitoring in an area stretching from 70° North latitude to 70° South latitude and for downloading fresh weather data updated every 30 min or more frequently. This used to be achieved effectively by a system of five geostationary satellites: two American, one European, one Russian, and one Japanese. In 2007, this orbital constellation consisted of the following satellites: a U.S. satellite (GOES), a Japanese satellite (MTSAT-IR), two Indian satellites (Metsat-1, Insat-3A), and one Chinese satellite (FY-3 C). The lower echelon of weather satellites is deployed at low geosynchronous subpolar orbits for the monitoring of the earth’s cloud cover and other weather phenomena; measuring vertical atmospheric temperature and humidity profiles and sea surface temperature, surface wind, ice and snow cover; and gathering information from environmental geophysical monitoring platforms, etc. The low-orbit echelon currently consists of national weather satellites: NOAA-K, DMSP 5D-3 (U.S.), Metop (Western Europe), FY-1D, FY-3 (China), and Meteor-M (Russia).The availability and broad capabilities of the domestic and foreign navigation systems (GLONASS, GPS, and GALILEO) make it possible to promptly position mobile objects and solve space surveying tasks as part of geodynamic studies and for the purpose of monitoring dangerous natural and technogenicobjects.Space communications and relaying system becomes increasingly important. There are dozens of communications and data transmission satellites owned by the U.S., Russia, China, India, Japan, Italy, and another 16 countries and currently operating in geostationary orbit.Therefore, the space infrastructure needed for monitoring of natural and technogenic disasters is already in place. It is only necessary to focus on creating a system of satellites carrying special equipment that is not available in traditional monitoring spacecraft. Such equipment can be made and put into orbit aboard small microsatellites and multipurpose orbiting platforms that alongside other monitoring, communications, and navigation systems could effectively solve monitoring and forecasting tasks for the benefit of all interested parties using integrated international information, navigational and telecommunication capabilities. ConclusionsAll this can be developed and implemented within the frameworks of the government institutions, more or less engaged with insurance coverage of economic and environmental social interests.Taking into consideration mentioned above it is necessary to make the following conclusions:study and solution of questions on the environmental insurance is very important and essential in the current conditions. On the assumption of the environmental insurance functions, we can say that it could be a strong influencing factor on the situation in the field of control over negative influence of enterprises on the environment, and by the same token to reduce environmental risk and damage;development of the environmental insurance in Kazakhstan is complicated not only for the lack of perfect legal base, but also for the tight financial situation of enterprises;as far as the environmental insurance institute has been created comparatively recently, difficulties in realization of the environmental insurance system are connected with the lack of experience and qualified personnel;the problem of the liability insurance of hazardous productions should be solved by compulsory participation of the state;development of the environmental insurance depends not only on the state vigorous activity in this direction, but also on the insurance appropriateness for enterprises/productions themselves, the sources of heightened technogenic danger;such points, when risk of accidental situations involving extensive economic damage is very high, when there are no means on their prevention and response of consequences, when damages to the affected are not being compensated, makes this problem of development of the environmental insurance system in the republic as very actual, as the environmental insurance is that environmental-economic reserve which will allow attract means from the private sector into the field of the environment protection with regard to compensation of damages from its accidental pollution and additional financial provision of the environmental measures.BibliographyСтихийные бедствия и техногенные катастрофы. Превентивныемеры, Natural Hazards. UnNatural Disasters: The Economics of Effective Prevention, 2012, ISBN ,978-5-9614-1527-8, 978-5-9614-1105-8, 978-0-8213-8050-5Barry A. Turner, Nick F. Pidgeon, Man-made disasters,published by Butterworth-Heinemann (2nd edn), 1997 ISBN 0-7506-2087-0Lee Davis, Man-Made Catastrophes, Revised Edition Revised Edition, ISBN-10: 081604418X, ISBN-13: 978-0816044184 Publisher: Facts on File; Revised edition, 2002FarzadHatamiand, Hossein Behsan . Evaluation, and Investigation of Risk Management in Iranian, construction Industry. Life Sci J 2012;9(4):387-399 Мультимедийный словарь перевода слов онлайн http://www.multitran.ru

-

Вопрос-ответ:

Какие факторы необходимы для прогнозирования техногенных катастроф?

Необходимым условием для прогнозирования техногенных катастроф является наличие достаточного количества измеряемых факторов, которые могут влиять на возникновение и развитие таких ситуаций.

Какова роль космических систем в практической реализации прогнозирования техногенных катастроф?

Космические системы играют важную роль в практической реализации прогнозирования техногенных катастроф. Они позволяют получать информацию о текущем состоянии и динамике связанных событий космоса и геосферы, что помогает в более точном прогнозировании возможных катастроф.

Какие факторы являются предвестниками техногенных чрезвычайных ситуаций?

Предвестниками техногенных чрезвычайных ситуаций могут являться различные факторы, такие как изменение погоды, отклонение от нормальных параметров работы технических систем, нарушение экологического равновесия и другие. Они могут свидетельствовать о потенциальной опасности и помогают предсказать возможное возникновение катастрофы.

Какова задача поиска доказательств и необходимых условий для естественных и техногенных катастроф?

Задача поиска доказательств и необходимых условий для естественных и техногенных катастроф заключается в определении оптимального количества измеряемых факторов, которые могут быть связаны с возникновением и развитием таких ситуаций. Это важный аспект для дальнейшей работы в области предсказывания и предотвращения катастрофных ситуаций.

Какое значение имеет состояние и динамика космоса и геосферы для прогнозирования техногенных катастроф?

Состояние и динамика космоса и геосферы имеют большое значение для прогнозирования техногенных катастроф. Это связанные между собой процессы, которые могут влиять на возникновение чрезвычайных ситуаций. Изучение данных об этих процессах позволяет получить более полную картину состояния окружающей среды и предсказать возможные катастрофы.

Какие аспекты техносферной безопасности окружающей среды особенно важны?

Особенно важными аспектами техносферной безопасности окружающей среды являются реферативный перевод, предвестники техногенных чрезвычайных ситуаций, прогнозирование техногенных катастроф и роль космических систем в их практической реализации.

Какие факторы могут выступать предвестниками техногенных чрезвычайных ситуаций?

Факторы, которые могут выступать предвестниками техногенных чрезвычайных ситуаций, могут быть разнообразными. Это могут быть изменения в состоянии атмосферы, давления, температуры, радиоактивности и других параметров окружающей среды.

Какие задачи стоят перед системами прогнозирования техногенных катастроф?

Задачи, стоящие перед системами прогнозирования техногенных катастроф, включают в себя определение вероятности и возможного масштаба различных аварий и стихийных бедствий, а также моделирование и анализ данных для выявления трендов и предсказания будущих событий.

Какую роль играют космические системы в практической реализации прогнозирования техногенных катастроф?

Космические системы играют важную роль в практической реализации прогнозирования техногенных катастроф. Они позволяют получать данные о состоянии окружающей среды и геосферы с высокой точностью и в реальном времени, что позволяет предсказывать и предотвращать возможные катастрофы.

Какие выводы можно сделать из проведенного исследования?

Из проведенного исследования можно сделать вывод, что поиск доказательств и необходимых и достаточных условий для естественных и техногенных катастроф, а также оптимальное количество измеряемых факторов являются важными аспектами дальнейшей работы в области техносферной безопасности окружающей среды.

Какие меры предпринимаются для обеспечения техносферной безопасности окружающей среды?

Для обеспечения техносферной безопасности окружающей среды предпринимаются различные меры. Это включает в себя контроль за выбросами вредных веществ в атмосферу и водоемы, мониторинг состояния почвы и подземных вод, а также разработку и внедрение технологий, способствующих экологической безопасности.

Какие прогнозы можно делать в отношении техногенных катастроф и какую роль в этом играют космические системы?

Прогнозирование техногенных катастроф включает в себя анализ и оценку данных, полученных с помощью космических систем. Космические системы позволяют отслеживать изменения климата, состояния грунта и водных ресурсов, а также мониторить распространение выбросов вредных веществ. Таким образом, они играют важную роль в прогнозировании и предотвращении техногенных катастроф.